Skip to main content

Notes on Color #5: Projecting Munsell Colors

Before the digital era, the Munsell Color System was probably the best perceptually uniform color system with hue, chroma and value components. It is also used nowadays.

The 1943 Munsell renotations (with portion cut away).
Source: Wikipedia CC BY-SA 3.0

When reading the introduction page of Oklab, I learned about the idea of projecting Munsell colors into diffrent color space. I find it an intuitive and fun way to study color space. Who does not like colorful demos?

Here we have to assume the quality of the Munsell data, which might not be 100% scientific. Anways I think it should be good enough, as proved by generations of aritist.

With this assmption, we may examine munsell colors in the target color space, and observe the following:

- Do the points with same chroma form a perfect circle? Are they distributed evenly?
- Do the points with same hue form a straight line? Are they distributed evenly?
- For luminance/brightness, actually I assume decient color spaces are already good enough. 

The Results

Here are projections of Munsell colors with value = 5.

My farvorites: CAM16-UCS and Oklab. 


CAM16-UCS
Oklab

Others.

Note that some models are not even designed for perception. They are simply presented here for fun.

CIELAB
CIELUV
Hunter Lab

IPT
OSA UCS

SRLab2
YCbCr
CIEXYZ
xyY


HSV
HSL

Comments

Popular posts from this blog

Determine Perspective Lines With Off-page Vanishing Point

In perspective drawing, a vanishing point represents a group of parallel lines, in other words, a direction. For any point on the paper, if we want a line towards the same direction (in the 3d space), we simply draw a line through it and the vanishing point. But sometimes the vanishing point is too far away, such that it is outside the paper/canvas. In this example, we have a point P and two perspective lines L1 and L2. The vanishing point VP is naturally the intersection of L1 and L2. The task is to draw a line through P and VP, without having VP on the paper. I am aware of a few traditional solutions: 1. Use extra pieces of paper such that we can extend L1 and L2 until we see VP. 2. Draw everything in a smaller scale, such that we can see both P and VP on the paper. Draw the line and scale everything back. 3. Draw a perspective grid using the Brewer Method. #1 and #2 might be quite practical. #3 may not guarantee a solution, unless we can measure distances/p...

Chasing an IO Phantom

My home server has been weird since months ago, it just becomes unresponsive occassionally. It is annoying but it happens only rarely, so normally I'd just wait or reboot it. But weeks ago I decided to get to the bottom of it. What's Wrong My system set up is: Root: SSD, LUKS + LVM + Ext4 Data: HDD, LUKS + ZFS 16GB RAM + 1GB swap Rootless dockerd The system may become unresponsive, when the IO on HDD  is persistantly high for a while. Also: Often kswapd0 has high CPU High IO on root fs (SSD) From dockerd and some containers RAM usage is high, swap usage is low It is very strange that IO on HDD can affect SSD. Note that when this happens, even stopping the IO on HDD does not always help. Usually restarting dockerd does not help, but rebooting helps. Investigation: Swap An obvious potential root cause is the swap. High CPU on kswapd0 usually means the free memory is low and the kernel is busy exchanging data between disk and swap. However, I tried the following steps, none of the...

Fix Google Security Code

Google Security Code (http://g.co/sc) is one type of 2-step verification. This is particularly useful when security keys and passkeys are not available. I have been using it in my LXC containers, until today I found out that it stopped working. It just kept saying "The code is invalid". It is easy to rule out some factors: The code works on other browsers on my laptop. The code works on other devices that are directly connected to the router. So it appears that Google also checks IP addresses besides the security code. Recently I have IPv6 enabled, so most devices that are directly connected to the router have both IPv4 and IPv6 addresses. But  I only enabled IPv4 for my LXC containers. So I guess when a code is generated by device A and used by device B, Google should be able to check that device A and device B are closely located. But in my case, IPv6 address appears on device A but not on device B, which may look suspicious. To fix the problem, I just needed to disable IPv...