Skip to main content

Notes on Color #4: HSY

Previously I discussed why HSV and HSL are bad, despite that they are quite popular adopted by digital painting tools.

I learnd about HSY from Krita, which seems to solve a number of issues. Here I did some quick explorations in order to learn more about it's properties.

First of all, HSY is very similar to other HS* family members. The definition of H and S should be the same as in HSL. Y is for Luma, which is a weighted sum of (gamma-corrected) all three components. The weights reflect our brightness sensitivity of different wavelengths. The specific values depend on the actual primary colors.

Here's a HSY disk at Y=0.5, for sRGB.

HCY disk with Y=0.5

Comparing with HSV or HSL disk, this one looks smoother, and a bit "muddy" near the center. This means the Y value does predicts the actual luminance well. The gray version (converted via CIELAB) may verify this observation:
L(CIELAB) channel of the HCY disk.


So there is a huge improvement over other HS* models. It seems good enough for digital painting, right? Well, yes and no. I mean no.

The Two Lies

Well the "huge improment" part is true, but there are two lies above.

First of all, notice the "HCY" in the captions,  that was a not a typo. The distance to the center represents chroma rather than saturation.

Second, you may notice some lighter areas in the grey version, near the purple area and green area. That is not an illusion.

This changes the story entirely. Allow me to reveal the imperfect truth.

sRGB colors in the HCY disk where Y=0.5.
  
This weird shape represents all sRGB colors on the disk. At first I was quite sure that something is wrong in my code. Later I realized that if (r, g, b) has a luma of 0.5, then so does (1-r, 1-g, 1-b) , provided that the sum of the component weights is 1.

In the previous colorful version, the out-of-gamut colors were capped, therefore not accurate.

This weird shape is problematic, somtimes it is no longer possible to mix two colors by picking a point on the line segment. On the other hand, in Krita we do have a full-circle version:

HSY disk in Krita, with Y near 0.5


It appears more "muddy" here. If you examine the colors near the border, red-ish and blue-ish areas look fine, but other parts look gray-ish. 

In fact this version is obatained by stretching the HCY disk. Each radius is stretched to [0, 1] independently. This way the grey-ish area at the center appears much bigger than it is.

Personally I don't think this transformation makes much sense. Now the saturation value depends on both hue and brightness, so two saturation values are not really comparable. I think we should instead accept something like, the most "colorful yellow" is always brighter than the most "colorful blue"  (within a  (usual) RGB model). Therefore we should always be careful when shifting hues for high-chroma colors.



Comments

Popular posts from this blog

Determine Perspective Lines With Off-page Vanishing Point

In perspective drawing, a vanishing point represents a group of parallel lines, in other words, a direction. For any point on the paper, if we want a line towards the same direction (in the 3d space), we simply draw a line through it and the vanishing point. But sometimes the vanishing point is too far away, such that it is outside the paper/canvas. In this example, we have a point P and two perspective lines L1 and L2. The vanishing point VP is naturally the intersection of L1 and L2. The task is to draw a line through P and VP, without having VP on the paper. I am aware of a few traditional solutions: 1. Use extra pieces of paper such that we can extend L1 and L2 until we see VP. 2. Draw everything in a smaller scale, such that we can see both P and VP on the paper. Draw the line and scale everything back. 3. Draw a perspective grid using the Brewer Method. #1 and #2 might be quite practical. #3 may not guarantee a solution, unless we can measure distances/p...

Qubes OS: First Impressions

A few days ago, while browsing security topics online, Qubes OS surfaced—whether via YouTube recommendations or search results, I can't recall precisely. Intrigued by its unique approach to security through compartmentalization, I delved into the documentation and watched some demos. My interest was piqued enough that I felt compelled to install it and give it a try firsthand. My overall first impression of Qubes OS is highly positive. Had I discovered it earlier, I might have reconsidered starting my hardware password manager project. Conceptually, Qubes OS is not much different from running a bunch of virtual machines simultaneously. However, its brilliance lies in the seamless desktop integration and the well-designed template system, making it far more user-friendly than a manual VM setup. I was particularly impressed by the concept of disposable VMs for temporary tasks and the clear separation of critical functions like networking (sys-net) and USB handling (sys-usb) into the...

Exploring Immutable Distros and Declarative Management

My current server setup, based on Debian Stable and Docker, has served me reliably for years. It's stable, familiar, and gets the job done. However, an intriguing article I revisited recently about Fedora CoreOS, rpm-ostree, and OSTree native containers sparked my curiosity and sent me down a rabbit hole exploring alternative approaches to system management. Could there be a better way? Core Goals & Requirements Before diving into new technologies, I wanted to define what "better" means for my use case: The base operating system must update automatically and reliably. Hosted services (applications) should be updatable either automatically or manually, depending on the service. Configuration and data files need to be easy to modify, and crucially, automatically tracked and backed up. Current Setup: Debian Stable + Docker My current infrastructure consists of several servers, all running Debian Stable. System Updates are andled automatically via unattended-upgrades. Se...