Skip to main content

Notes on Color #3: Color Spaces

The first time I heard of the term "color space" was probably from some article about display color gamut/calibration. I learned that it is important for a display to achieve at least 100% sRGB, for digital painting or image processing. Well I didn't know what exactly "s" means here, but I got a feeling that it has something to do with the RGB values in HTML color codes.

A few color spaces
Source: Wikipedia CC BY-SA 3.0


The diagram could be very confusing. I had a few questions, which I think I can answer today:

Why does it look like a weird 2d shape, instead of a 3d volume?
It is a 2d shape, which is a slice of the 3d space at a constant luminance.
More specifically, this is a sliced xy space at a specific value of Y.

Why does the sRGB color space appear as a triangle?
The sRGB color space is generated by 3 primary colors, which corresponds to the 3 vertices of the triangle. Moreover, for any 2 colors, all available colors obtained by mixing these 2 colors (with different ratios) corresponds to all points on the line segment that connects the 2 points.

Assuming RGB values, (1, 1, 0) may be obtained by mixing (1, 0, 0) and (0, 1, 0). However they are not on a line.
The idea is that luminance and chromaticity may be examined independently. (1, 1, 0) would have the same chromaticity as (0.5, 0.5, 0), which is on the line segment connecting (1, 0, 0) and (0, 1, 0).
However, note that (0.5, 0.5, 0) is not necessarily the middle point on the xy diagram. Simliarly, the white point is not necessarily the gravicity center of the triangle.


This wiki page lists and compares a number of color spaces. Here are my notes:

CAM - Color Appearance Model, which describes human perceiption of colors. These models could be useful for choosing colors. Difficult to compute. Examples: CAM16, Oklab, CIECAM02, CIELAB.

UCS - Uniform Color Space, in which the distance between two color points reflects the color difference perceived by human. These models could be useful for generating gradients. Difficult to compute. Examples: CAM16-UCS, OSA-UCS.

RGB - Generated with 3 primary colors. It is widely used for display devices and media encoding. The linear version (without gamma correction/encoding) is also useful for mixing colors (lights) and rendering. Easy to compute. Examples: sRGB, Adobe RGB.

HSV, HSL, HSI, HSY - Cylindrical transformations of RGB. Widely used for historical reasons. Easy to compuate but very inaccurate. 

Finally, I found the following videos very helpful:

Comments

Popular posts from this blog

Determine Perspective Lines With Off-page Vanishing Point

In perspective drawing, a vanishing point represents a group of parallel lines, in other words, a direction. For any point on the paper, if we want a line towards the same direction (in the 3d space), we simply draw a line through it and the vanishing point. But sometimes the vanishing point is too far away, such that it is outside the paper/canvas. In this example, we have a point P and two perspective lines L1 and L2. The vanishing point VP is naturally the intersection of L1 and L2. The task is to draw a line through P and VP, without having VP on the paper. I am aware of a few traditional solutions: 1. Use extra pieces of paper such that we can extend L1 and L2 until we see VP. 2. Draw everything in a smaller scale, such that we can see both P and VP on the paper. Draw the line and scale everything back. 3. Draw a perspective grid using the Brewer Method. #1 and #2 might be quite practical. #3 may not guarantee a solution, unless we can measure distances/p...

Qubes OS: First Impressions

A few days ago, while browsing security topics online, Qubes OS surfaced—whether via YouTube recommendations or search results, I can't recall precisely. Intrigued by its unique approach to security through compartmentalization, I delved into the documentation and watched some demos. My interest was piqued enough that I felt compelled to install it and give it a try firsthand. My overall first impression of Qubes OS is highly positive. Had I discovered it earlier, I might have reconsidered starting my hardware password manager project. Conceptually, Qubes OS is not much different from running a bunch of virtual machines simultaneously. However, its brilliance lies in the seamless desktop integration and the well-designed template system, making it far more user-friendly than a manual VM setup. I was particularly impressed by the concept of disposable VMs for temporary tasks and the clear separation of critical functions like networking (sys-net) and USB handling (sys-usb) into the...

ESP32S3: Flash Encryption and Secure Boot

Flash encryption and secure boot are useful security features for ESP32S3 chip. While not perfect, they definitely make it harder to extract the secrets in the chip. However, it is tricky to enable both features at the same time. The topic is actually discussed in the official documentation: ESP32S3 Security Features Security Features Enablement Workflows Especially, the second one mentioned it is recommended to enable flash encryption before secure boot. But I still find the documentation confusing. In the end I was able to successfully enable both, here's my findings. My Understanding After my adventure, here's what I think could have worked. WARNING, this is untested. Follow  Security Features Enablement Workflows : Burn all the keys, as long as their purpose eFuses and read/write protections Burn other security eFuses, but DO NOT burn ENABLE_SECURITY_DOWNLOAD in the middle, which is mentined at the end of the instruction for both flash encryption and secure boot. Burn...