Skip to main content

[转]主要C++流派,看看你是哪一流

挺哏儿的,我大概是4 + 5 + 9

1. 经典C++流:类是核心,例程多用C Runtime的,很少用模版,一般是正统教育的结果。
2. 古典C流:基本上当C用,偶尔用用对象,不使用异常,喜欢怀旧。
3. MFC流:秉承MFC的风格,主要使用MFC/ATL对象和Win32 API,不喜欢STL,用很多的宏把IDE的语法提示模块折磨到崩溃。
4. Portable流:以C Runtime和STL为主要工具,使用类和模版,不跨平台毋宁死。
5. Functional流:以模版和STL为主要武器,大量使用函数式语言的设计方法,并号称这才是真正的C++。
6. Win32流:多使用全局函数,偏爱Win32 API,但不排斥C Runtime,通常喜欢轻量级的程序,所以身材也比较苗条。
7. Java流:全面使用Java的风格,不能容许任何全局成员,但允许使用STL的集合类,写很多叫Factory的类。
8. COM流:喜欢AddRef()和Release(),大量使用接口,隐藏一切可以隐藏的东西,诵经的时候要把上帝替换成COM。
9. 戒律流:追求完美的C++程序,计较每一个const和throw(),极力避免不安全的cast,随身一定要带一本ISO C++手册。
10. 混沌流:其程序无常形,无恒道,变幻莫测,吾不知其名。

Comments

Popular posts from this blog

Determine Perspective Lines With Off-page Vanishing Point

In perspective drawing, a vanishing point represents a group of parallel lines, in other words, a direction. For any point on the paper, if we want a line towards the same direction (in the 3d space), we simply draw a line through it and the vanishing point. But sometimes the vanishing point is too far away, such that it is outside the paper/canvas. In this example, we have a point P and two perspective lines L1 and L2. The vanishing point VP is naturally the intersection of L1 and L2. The task is to draw a line through P and VP, without having VP on the paper. I am aware of a few traditional solutions: 1. Use extra pieces of paper such that we can extend L1 and L2 until we see VP. 2. Draw everything in a smaller scale, such that we can see both P and VP on the paper. Draw the line and scale everything back. 3. Draw a perspective grid using the Brewer Method. #1 and #2 might be quite practical. #3 may not guarantee a solution, unless we can measure distances/p...

Qubes OS: First Impressions

A few days ago, while browsing security topics online, Qubes OS surfaced—whether via YouTube recommendations or search results, I can't recall precisely. Intrigued by its unique approach to security through compartmentalization, I delved into the documentation and watched some demos. My interest was piqued enough that I felt compelled to install it and give it a try firsthand. My overall first impression of Qubes OS is highly positive. Had I discovered it earlier, I might have reconsidered starting my hardware password manager project. Conceptually, Qubes OS is not much different from running a bunch of virtual machines simultaneously. However, its brilliance lies in the seamless desktop integration and the well-designed template system, making it far more user-friendly than a manual VM setup. I was particularly impressed by the concept of disposable VMs for temporary tasks and the clear separation of critical functions like networking (sys-net) and USB handling (sys-usb) into the...

Exploring Immutable Distros and Declarative Management

My current server setup, based on Debian Stable and Docker, has served me reliably for years. It's stable, familiar, and gets the job done. However, an intriguing article I revisited recently about Fedora CoreOS, rpm-ostree, and OSTree native containers sparked my curiosity and sent me down a rabbit hole exploring alternative approaches to system management. Could there be a better way? Core Goals & Requirements Before diving into new technologies, I wanted to define what "better" means for my use case: The base operating system must update automatically and reliably. Hosted services (applications) should be updatable either automatically or manually, depending on the service. Configuration and data files need to be easy to modify, and crucially, automatically tracked and backed up. Current Setup: Debian Stable + Docker My current infrastructure consists of several servers, all running Debian Stable. System Updates are andled automatically via unattended-upgrades. Se...