Skip to main content

Moving Items Along Bezier Curves with CSS Animation (Part 2: Time Warp)

This is a follow-up of my earlier article. I realized that there is another way of achieving the same effect.

This article has lots of nice examples and explanations, the basic idea is to make very simple @keyframe rules, usually just a linear movement, then use timing function to distort the time, such that the motion path becomes the desired curve.

I'd like to call it the "time warp" hack.


Demo




How does it work?


Recall that a cubic Bezier curve is defined by this formula:

\[B(t) = (1-t)^3P_0+3(1-t)^2tP_1+3(1-t)t^2P_2+t^3P_3,\ 0 \le t \le 1.\]

In the 2D case, \(B(t)\) has two coordinates, \(x(t)\) and \(y(t)\). Define \(x_i\) to the be x coordinate of \(P_i\), then we have:

\[x(t) = (1-t)^3x_0+3(1-t)^2tx_1+3(1-t)t^2x_2+t^3x_3,\ 0 \le t \le 1.\]

So, for our animated element, we want to make sure that the x coordiante (i.e. the "left" CSS property) is \(x(t)\) at time \(t\). 

Because \(x(0)=x_0\) and \(x(1)=x_3\), we know that the @keyframes rule must be defined as

@keyframes move-x {
  from { left: x0; }
  to { left: x3; }
}
Now to determine the timing function, suppose the function is
cubic-bezier(u1, v1, u2, v2)
Note that this is again a 2D cubic Bezier curve, defined by four points \((0, 0), (u_1, v_1), (u_2, v_2), (1, 1)\). And the function for each coordinate would be:

\[ u(t) = 3(1-t)^2tu_1 + 3(1-t)t^2u_2 + t^3 \]
\[ v(t) = 3(1-t)^2tv_1 + 3(1-t)t^2v_2 + t^3 \]

Recall that, according to the CSS spec, at any time \(t\), the animate value \(\text{left}(t)\) is calculated as:

\[ \text{left}(t) = x_0 + v(t')(x_3 - x_0), \text{where}\ u(t')=t \]

Our first step is to set \(u_1=1/3\) and \(u_2=2/3\), such that \(u(t)=t\) for all \(t\).

Then we set:
\[ v_1 = \frac{x_1-x_0}{x_3-x_0}, v_2 = \frac{x_2-x_0}{x_3-x_0}  \]

This way we have

\[ v(t) = \frac{x(t) - x_0}{x_3-x_0} \]

Combining everything together, we know that if we set the animation-timing-function as

\[ \text{cubic-bezier}(\frac{1}{3}, \frac{x_1-x_0}{x_3-x_0}, \frac{2}{3},  \frac{x_2-x_0}{x_3-x_0}) \]

then we have \(\text{left}(t)=x(t)\) as desired.

Simliarly we can define @keyframes and animation-timing-function for \(y(t)\), then our CSS animation is completed.

Note: obviously the method does not work when \(x_0=x_3\) or \(y_0=y_3\), but in practice we can add a tiny offset in such cases.

Animation Timing


Observe that \(u(t)\) controls the mapping between the animation progress and the variable \(t\) of the curve. \(u_1=1/3\) and \(u_2=2/3\) are chosen to achieve the default linear timing. We can tweak the values of \(u_1\) and \(u_2\) to alter the timing.

Note that the methods from the previous article supports any timing functions, including "steps()" and "cubic-bezier()".

It's easy to see that a "cubic-bezier(u1, 1/3, u2, 2/3)" timing function for the previous article would be the same as setting the same values of \(u_1\) and \(u_2\) for the "time warp" version. In other words, animation timing is limited here, we have only the input progress mapping, but not the output progress mapping.

Of course the reason is we are already using the output progress mapping for the time warp effect.

Comments

plus said…
This comment has been removed by the author.
plus said…
I don't quite understand the meaning of modifying these parameters cubic-bezier(1, v1, 0, v2), does this mean that the x0 point is t=1 and t=0 after reaching the x1 point
Suppose cubic-bezier (1, 0.33, 0, 0.66) matches the image results https://cubic-bezier.com/#1,.33,0,.66 this site?
Lu Wang said…
@plus

> Suppose cubic-bezier (1, 0.33, 0, 0.66) matches the image results https://cubic-bezier.com/#1,.33,0,.66 this site?

Yes that's correct.

I'm not sure what you mean by "cubic-bezier(1, v1, 0, v2)", and what are t, x0 and x1. Can you please elaborate?

On the other hand, as you can see in your example on cubic-bezier.com, (1, v1) and (0, v2) are the coordinates of the control points.

Popular posts from this blog

Determine Perspective Lines With Off-page Vanishing Point

In perspective drawing, a vanishing point represents a group of parallel lines, in other words, a direction. For any point on the paper, if we want a line towards the same direction (in the 3d space), we simply draw a line through it and the vanishing point. But sometimes the vanishing point is too far away, such that it is outside the paper/canvas. In this example, we have a point P and two perspective lines L1 and L2. The vanishing point VP is naturally the intersection of L1 and L2. The task is to draw a line through P and VP, without having VP on the paper. I am aware of a few traditional solutions: 1. Use extra pieces of paper such that we can extend L1 and L2 until we see VP. 2. Draw everything in a smaller scale, such that we can see both P and VP on the paper. Draw the line and scale everything back. 3. Draw a perspective grid using the Brewer Method. #1 and #2 might be quite practical. #3 may not guarantee a solution, unless we can measure distances/p...

Qubes OS: First Impressions

A few days ago, while browsing security topics online, Qubes OS surfaced—whether via YouTube recommendations or search results, I can't recall precisely. Intrigued by its unique approach to security through compartmentalization, I delved into the documentation and watched some demos. My interest was piqued enough that I felt compelled to install it and give it a try firsthand. My overall first impression of Qubes OS is highly positive. Had I discovered it earlier, I might have reconsidered starting my hardware password manager project. Conceptually, Qubes OS is not much different from running a bunch of virtual machines simultaneously. However, its brilliance lies in the seamless desktop integration and the well-designed template system, making it far more user-friendly than a manual VM setup. I was particularly impressed by the concept of disposable VMs for temporary tasks and the clear separation of critical functions like networking (sys-net) and USB handling (sys-usb) into the...

Exploring Immutable Distros and Declarative Management

My current server setup, based on Debian Stable and Docker, has served me reliably for years. It's stable, familiar, and gets the job done. However, an intriguing article I revisited recently about Fedora CoreOS, rpm-ostree, and OSTree native containers sparked my curiosity and sent me down a rabbit hole exploring alternative approaches to system management. Could there be a better way? Core Goals & Requirements Before diving into new technologies, I wanted to define what "better" means for my use case: The base operating system must update automatically and reliably. Hosted services (applications) should be updatable either automatically or manually, depending on the service. Configuration and data files need to be easy to modify, and crucially, automatically tracked and backed up. Current Setup: Debian Stable + Docker My current infrastructure consists of several servers, all running Debian Stable. System Updates are andled automatically via unattended-upgrades. Se...