Skip to main content

Moving Items Along Bezier Curves with CSS Animation (Part 1: Constructions)

TLDR: This article is NOT about cubic-bezier(), and it is not about layered CSS animations (for X and Y axes respectively). It is about carefully crafted combined animation, that moves an element along any quadratic/cubic Bezier curve.

UPDATE: Here's the link to part 2.

Following my previous post, I continued investigating competing CSS animations, which are two or more CSS animations affecting the same property.

I observed that two animations may "compete". In the following example, the box has two simple linear animations, move1 and move2. It turns out the box actually moves along a curved path:

So clearly it must be the combined effects from both animations. Note that in move2, the `from` keyframe was not specified. It'd look like this if it is specified:

In this case, it seems only the second animation takes effects.

Actually this is not surprising, in the first case, the starting point of move2 would be "the current location from move1".  But in the second case, move2 does not need any "current location", so move1 would take no effect.

I further examined the actual behavior of the first case. If move1 is "move from \(P_0\) to \(P_1\)" and move2 is "move to \(P_2\)". At time \(t\):

- The animated location of move1 is \(Q_1=(1-t)P_0 + tP_1\)

- The animated location of move1+move2 is \(Q_2=(1-t)Q_1 + tP_2\)

This formula actually looks very similar to the Bezier curve, but I just double checked from Wikipedia, they are not the same.

Fun fact: I came up with this string art pattern during high school, I realized that it is not a circle arc, but I didn't know what kind of curve it is. Now I understand that it is a Bezier curve.

Quadratic Beziers in string art


Build a quadratic Bezier animation path with two simple animations

The quadratic Bezier curve is defined by this formula:

\[B(t) = (1-t)^2P_0 + 2(1-t)tP_1 + t^2P_2, 0\le t \le 1\]

But our curve looks like \(f(t) = (1-t)^2 P_0 + t(1-t)P_1' + tP_2\). Note that I use \(P_1'\) to distinguish it from P1 above.

If we set \(P_1'=2P_1-P_2\), we'll see that f(t)=B(t) for all t. So it is a Bezier curve, just the control point is a bit different.

Here's an interactive demo, which is based on this codepen.


An Alternative Version

Another option is to follow the construction of a Bezier curve:

Bézier 2 big

This version needs slightly more code, but it does not require much math. Just observe that a quadratic Bezier curve is a linear interpolation of two moving points, which are in turn obtained by another two linear interpolations.

All these linear interpolation can be easily implemented with CSS animation on custom properties. Here is an example:

Here I just have one animation, which does multiple linear interpolation at the same time. In this case I have to make sure all animated custom properties are defined with @property, which was not the case in the previous example.

How about cubic Bezier curves?

Both versions can be extended to make animation along cubic Bezier paths.

The first version needs a bit more math, but doable. 

\[ P_1' = 3P_1 - 3P_2 + P_3\]
\[ P_2' = 3P_2 - 2P_3\]


The second version just involves more custom properties.


Actually both versions may be extended to even higher-degree Bezier curves, and 3D versions.

For the first version, I suppose there would be a generic formula for any \(P_i'\) for any \(N\)-order curve, but I did not spend time in it.

Comments

Popular posts from this blog

Determine Perspective Lines With Off-page Vanishing Point

In perspective drawing, a vanishing point represents a group of parallel lines, in other words, a direction. For any point on the paper, if we want a line towards the same direction (in the 3d space), we simply draw a line through it and the vanishing point. But sometimes the vanishing point is too far away, such that it is outside the paper/canvas. In this example, we have a point P and two perspective lines L1 and L2. The vanishing point VP is naturally the intersection of L1 and L2. The task is to draw a line through P and VP, without having VP on the paper. I am aware of a few traditional solutions: 1. Use extra pieces of paper such that we can extend L1 and L2 until we see VP. 2. Draw everything in a smaller scale, such that we can see both P and VP on the paper. Draw the line and scale everything back. 3. Draw a perspective grid using the Brewer Method. #1 and #2 might be quite practical. #3 may not guarantee a solution, unless we can measure distances/p...

[转] UTF-8 and Unicode FAQ for Unix/Linux

这几天,这个东西把我搞得很头疼 而且这篇文章好像太大了,blogger自己的发布系统不能发 只好用mail了 //原文 http://www.cl.cam.ac.uk/~mgk25/unicode.html UTF-8 and Unicode FAQ for Unix/Linux by Markus Kuhn This text is a very comprehensive one-stop information resource on how you can use Unicode/UTF-8 on POSIX systems (Linux, Unix). You will find here both introductory information for every user, as well as detailed references for the experienced developer. Unicode has started to replace ASCII, ISO 8859 and EUC at all levels. It enables users to handle not only practically any script and language used on this planet, it also supports a comprehensive set of mathematical and technical symbols to simplify scientific information exchange. With the UTF-8 encoding, Unicode can be used in a convenient and backwards compatible way in environments that were designed entirely around ASCII, like Unix. UTF-8 is the way in which Unicode is used under Unix, Linux, and similar systems. It is now time to make sure that you are well familiar ...

Moving Items Along Bezier Curves with CSS Animation (Part 2: Time Warp)

This is a follow-up of my earlier article.  I realized that there is another way of achieving the same effect. This article has lots of nice examples and explanations, the basic idea is to make very simple @keyframe rules, usually just a linear movement, then use timing function to distort the time, such that the motion path becomes the desired curve. I'd like to call it the "time warp" hack. Demo See the Pen Interactive cubic Bezier curve + CSS animation by Lu Wang ( @coolwanglu ) on CodePen . How does it work? Recall that a cubic Bezier curve is defined by this formula : \[B(t) = (1-t)^3P_0+3(1-t)^2tP_1+3(1-t)t^2P_2+t^3P_3,\ 0 \le t \le 1.\] In the 2D case, \(B(t)\) has two coordinates, \(x(t)\) and \(y(t)\). Define \(x_i\) to the be x coordinate of \(P_i\), then we have: \[x(t) = (1-t)^3x_0+3(1-t)^2tx_1+3(1-t)t^2x_2+t^3x_3,\ 0 \le t \le 1.\] So, for our animated element, we want to make sure that the x coordiante (i.e. the "left" CSS property) is \(...