Skip to main content

[转]关于一些Linux SVN的安装使用

SVN简介

The goal of the Subversion project is to build a version control system that is a compelling replacement for CVS in the open source community. The software is released under an Apache/BSD-style open source license.

SVN是一个版本控制软件,类似CVS,但是SVN的的有点是开源的,而且SVN的版本控制能力给CVS还要强多。

SVN可以用于项目管理,还可以用于版本同步,功能可是十分强呢:)

下载:[url=http://subversion.tigris.org/][color=#22229c]http://subversion.tigris.org[/color][/url]

当前日期稳定版SVN1.32http://subversion.tigris.org/downloads/subversion-1.3.2.tar.gz

安装:

解压:#: tar zxvf subversion-1.3.2.tar.gz

依次输入./configure , make , make install 进行编译安装完成。

开启SVN服务:svnserve -d

检测服务是否开启:netstat -ntlp如果看到3690的端口正常开放了,证明SVN启动了。

正式使用:
首先我们得建立一个SVN的项目,一般人都认为建立项目就只需要一个文件,在我第一次使用SVN之前都有这样的看法,SVN建立项目需要建立文件夹

建立项目命令:svnadmin create project_name project_name 为你的project名字,可以任意取。
建立完毕后,project_name是一个文件夹,进入文件夹,可以看到一个conf的文件夹。进入文件夹可以看到2个文件(如果没有passwd文 件,可以用vi创建),编辑 svnserve.conf 把anon-access = read ,auth_access = write
还有password-db = passwd 的注释去掉,还有[general]的注释也要去掉。
vi passwd文件,如果是新文件,则输入:
[user]
your_name = your_password
这里设置的your_name是你的用户名,your_password是你的密码,这个是访问SVN必要的通行证。


好了,现在终于把准备功夫做完了,下面可以正是使用了。
首先找到你的项目源代码文件夹,使用下面命令:
cd your project
in your project dircetory
use:svn co /home/project_name --username = your_name --password=your_password

好了,现在你可以在客户机上使用以下命令获得你想要的项目源代码文件
svn co svn://home/project_name --username=your_name --password = your_password

把增加的svn文件添加入svn库:
svn add /home/your_project/*.* --username=your_name --password = your_password

提交文件:
svn commit /home/your_project/*.* --username=your_name --password=your_password

更新文件:svn update /home/your_project/*.* --username=your_name --password=your_password

当然你可以编辑一个脚本文件来一次完成所有的操作:
vi svnupdate.sh

#!/bin/sh
svn add /home/your_project/*.* --username=your_name --password = your_password
svn commit /home/your_project/*.* --username=your_name --password=your_password
svn update /home/your_project/*.* --username=your_name --password=your_password

chmod +x svnupdate.sh

Finish

Comments

Popular posts from this blog

Determine Perspective Lines With Off-page Vanishing Point

In perspective drawing, a vanishing point represents a group of parallel lines, in other words, a direction. For any point on the paper, if we want a line towards the same direction (in the 3d space), we simply draw a line through it and the vanishing point. But sometimes the vanishing point is too far away, such that it is outside the paper/canvas. In this example, we have a point P and two perspective lines L1 and L2. The vanishing point VP is naturally the intersection of L1 and L2. The task is to draw a line through P and VP, without having VP on the paper. I am aware of a few traditional solutions: 1. Use extra pieces of paper such that we can extend L1 and L2 until we see VP. 2. Draw everything in a smaller scale, such that we can see both P and VP on the paper. Draw the line and scale everything back. 3. Draw a perspective grid using the Brewer Method. #1 and #2 might be quite practical. #3 may not guarantee a solution, unless we can measure distances/p...

[转] UTF-8 and Unicode FAQ for Unix/Linux

这几天,这个东西把我搞得很头疼 而且这篇文章好像太大了,blogger自己的发布系统不能发 只好用mail了 //原文 http://www.cl.cam.ac.uk/~mgk25/unicode.html UTF-8 and Unicode FAQ for Unix/Linux by Markus Kuhn This text is a very comprehensive one-stop information resource on how you can use Unicode/UTF-8 on POSIX systems (Linux, Unix). You will find here both introductory information for every user, as well as detailed references for the experienced developer. Unicode has started to replace ASCII, ISO 8859 and EUC at all levels. It enables users to handle not only practically any script and language used on this planet, it also supports a comprehensive set of mathematical and technical symbols to simplify scientific information exchange. With the UTF-8 encoding, Unicode can be used in a convenient and backwards compatible way in environments that were designed entirely around ASCII, like Unix. UTF-8 is the way in which Unicode is used under Unix, Linux, and similar systems. It is now time to make sure that you are well familiar ...

Moving Items Along Bezier Curves with CSS Animation (Part 2: Time Warp)

This is a follow-up of my earlier article.  I realized that there is another way of achieving the same effect. This article has lots of nice examples and explanations, the basic idea is to make very simple @keyframe rules, usually just a linear movement, then use timing function to distort the time, such that the motion path becomes the desired curve. I'd like to call it the "time warp" hack. Demo See the Pen Interactive cubic Bezier curve + CSS animation by Lu Wang ( @coolwanglu ) on CodePen . How does it work? Recall that a cubic Bezier curve is defined by this formula : \[B(t) = (1-t)^3P_0+3(1-t)^2tP_1+3(1-t)t^2P_2+t^3P_3,\ 0 \le t \le 1.\] In the 2D case, \(B(t)\) has two coordinates, \(x(t)\) and \(y(t)\). Define \(x_i\) to the be x coordinate of \(P_i\), then we have: \[x(t) = (1-t)^3x_0+3(1-t)^2tx_1+3(1-t)t^2x_2+t^3x_3,\ 0 \le t \le 1.\] So, for our animated element, we want to make sure that the x coordiante (i.e. the "left" CSS property) is \(...