Skip to main content

Setting up sslh as transparent proxy for a remote container

 I have an NGINX server that is publicly accessible. It has been deployed in the following manner:

  • Machine A
    • Port forwarding with socat: localhost:4443 ==>  0.0.0.0:443
  • Machine B
    • Running NGINX in a Docker container
    • Port forwarding by Docker: <container_ip>:443 ==> localhost:4443
    • Port forwarding by SSH to Machine A: localhost(B):4443 ==> localhost(A):4443
This in general works. Machine A is published to my domain, and the traffic to 443 is forwarded to NGINX in a few hops.

However there is a problem: the NGINX server never sees the real IP of the client, so it is impossible to depoly fail2ban or other IP address based tools. So I wanted to fix it.


Step 1: VPN

The first step is to connect machine A and B with a VPN. I feel that it would also work without it, but the iptables rules could be more tricky. 

WireGuard is my choice. I made a simple setup:
  • Machine A has IP: 10.0.0.2/24
  • Machine B has IP: 10.0.0.1/24
  • On both machines, the interface is called wg0, AllowedIPs of the other peer is <other_peer_ip>/32 
  • wg-quick and systemd are used manage the interface.

Step 2: Machine A

Configure sslh:

sslh --user sslh --transparent --listen 0.0.0.0:443 --tls 10.0.0.1:4443

This way sslh will create a transparent socket that talks to Machine B. When the reply packets come back, we need to redirect them to the transparent socket:

iptables -t mangle -N MY-SERVER
iptables -t mangle -I PREROUTING -p tcp -m socket --transparent -j MY-SERVER
iptables -t mangle -A MY-SERVER -j MARK --set-mark 0x1
iptables -t mangle -A MY-SERVER -j ACCEPT
ip rule add fwmark 0x1 lookup 100
ip route add local 0.0.0.0/0 dev lo table 100

Here I'm forwarding all transparent sockets, which is OK because sslh is the only one that creates such traffic.

Step 3: Machine B

Now machine A will start routing packets, the source address will be of the real HTTP client, not Machine A. However WireGuard will block them because of AllowedIPs. 

To unblock:

wg set wg0 peer MACHINE_A_PUB_KEY allowed-ips 10.0.0.2/32,0.0.0.0/0

Note that I cannot simply add 0.0.0.0/0 to AllowedIPs in the conf file, because wg-quick will automatically set ip routing.

My Linux distro and Docker already set up some good default values for forwarding traffic towards containers:
  • IP forwarding is enabled
  • -j DNAT is set to translate the destination IP address and port.
Now NGINX can see the real IP addresses of clients. It will also send response traffic back to that real IP. I need make sure that the traffic is sent back to machine A.

Note that if NGINX proactively initiates traffic to the Internet, I still want it to go through the default routing on machine B. But I suppose it is also OK to route all traffic to machine A if preferred/needed.

iptables -N MY-SERVER
# Tag incoming traffic towards NGINX
iptables -I FORWARD -i wg0 -o docker0 -m conntrack --ctorigdst 10.0.0.1 --ctorigdstport 4443 -j MY-SERVER
iptables -A MY-SERVER -j CONNMARK --set-xmark 0x01/0x0f
iptables -A MY-SERVER -j ACCEPT
# Tag response traffic from NGINX
iptables -t mangle -I PREROUTING -i docker0 -m connmark --mark 0x01/0x0f -j CONNMARK --restore-mark --mask 0x0f

# Route all tagged traffic via wg0
ip rule add fwmark 0x1 lookup 100
ip route add 0.0.0.0/0 dev wg0 via 10.0.0.2 table 100

Now everything should work.

Notes

I mainly referred to the official guide of sslh. I also referred to a few other sources like Arch Wiki. 

In practice, some instructions did not apply to my case:

  • I did not need to grant CAP_NET_RAW or CAP_NET_ADMIN to sslh. Althougth it is mentioned in an sslh doc and a manpage. Maybe the sslh package already handled it automatically.
  • On machine A I did not need to enable IP forwading. Actually this could make sense, because routing is happening on machine B.
  • I did not need to enable route_localnet on machine A

Comments

Popular posts from this blog

Determine Perspective Lines With Off-page Vanishing Point

In perspective drawing, a vanishing point represents a group of parallel lines, in other words, a direction. For any point on the paper, if we want a line towards the same direction (in the 3d space), we simply draw a line through it and the vanishing point. But sometimes the vanishing point is too far away, such that it is outside the paper/canvas. In this example, we have a point P and two perspective lines L1 and L2. The vanishing point VP is naturally the intersection of L1 and L2. The task is to draw a line through P and VP, without having VP on the paper. I am aware of a few traditional solutions: 1. Use extra pieces of paper such that we can extend L1 and L2 until we see VP. 2. Draw everything in a smaller scale, such that we can see both P and VP on the paper. Draw the line and scale everything back. 3. Draw a perspective grid using the Brewer Method. #1 and #2 might be quite practical. #3 may not guarantee a solution, unless we can measure distances/p...

Chasing an IO Phantom

My home server has been weird since months ago, it just becomes unresponsive occassionally. It is annoying but it happens only rarely, so normally I'd just wait or reboot it. But weeks ago I decided to get to the bottom of it. What's Wrong My system set up is: Root: SSD, LUKS + LVM + Ext4 Data: HDD, LUKS + ZFS 16GB RAM + 1GB swap Rootless dockerd The system may become unresponsive, when the IO on HDD  is persistantly high for a while. Also: Often kswapd0 has high CPU High IO on root fs (SSD) From dockerd and some containers RAM usage is high, swap usage is low It is very strange that IO on HDD can affect SSD. Note that when this happens, even stopping the IO on HDD does not always help. Usually restarting dockerd does not help, but rebooting helps. Investigation: Swap An obvious potential root cause is the swap. High CPU on kswapd0 usually means the free memory is low and the kernel is busy exchanging data between disk and swap. However, I tried the following steps, none of the...

Moving Items Along Bezier Curves with CSS Animation (Part 2: Time Warp)

This is a follow-up of my earlier article.  I realized that there is another way of achieving the same effect. This article has lots of nice examples and explanations, the basic idea is to make very simple @keyframe rules, usually just a linear movement, then use timing function to distort the time, such that the motion path becomes the desired curve. I'd like to call it the "time warp" hack. Demo See the Pen Interactive cubic Bezier curve + CSS animation by Lu Wang ( @coolwanglu ) on CodePen . How does it work? Recall that a cubic Bezier curve is defined by this formula : \[B(t) = (1-t)^3P_0+3(1-t)^2tP_1+3(1-t)t^2P_2+t^3P_3,\ 0 \le t \le 1.\] In the 2D case, \(B(t)\) has two coordinates, \(x(t)\) and \(y(t)\). Define \(x_i\) to the be x coordinate of \(P_i\), then we have: \[x(t) = (1-t)^3x_0+3(1-t)^2tx_1+3(1-t)t^2x_2+t^3x_3,\ 0 \le t \le 1.\] So, for our animated element, we want to make sure that the x coordiante (i.e. the "left" CSS property) is \(...