Skip to main content

关于电影评分

电影不像游戏,书籍或者其他大多数商品,几乎没有退货这么一说。为了避免踩雷,预判电影好坏就显得非常重要。这里好坏并不是电影艺术水平,社会反响或者制作质量,而是针对单一观看者的喜好。例如,如果我不爱看动作片,那动作电影拍得再好我也不爱看。

不知道是不是因为制作门槛降低了,我感觉现在每年电影太多了,可惜保持不变的是好片的数量而不是比例。似乎游戏产业也有类似现象。

我对电影(包括电视剧)的态度是不看新片,等上映后过几个月或者几年如果还有人记得,还能在网络上提起“这不是XX电影的经典片段吗?”,我才会觉得这电影基本靠谱,再去网上继续调查。在电影上映前和上映时能够作为判断依据的资料不多,预告片大概能算一主要信息,然而我觉得预告片只能大致证明影片的类型,别的不能过多参考。我踩雷的一个例子就是看了一个10分钟左右的预告片,觉得不错去看了一个动作片,然而发现这个片子最精彩的动作部分都在预告片里了。你说预告片骗人了吗,没有。我上当了吗,那肯定上当了。

另外我经常看电影简介,虽然里面是吐槽的为主。很多电影被压成不到15分钟的小故事反而
挺有趣的。极少数的电影,我了解了剧情,了解了结局还去看的,而且看了还很喜欢,比如《カメラを止めるな!》。而大多数的电影通过了简介这么一层过滤也就没了兴趣。

评分则是另一个大致有效的过滤标准,比如国内比较有影响力的豆瓣。“豆瓣评分X.Y”大概是在豆瓣网之外最有效最简短的电影评价。对于评分我一直也觉得参考意义不大,依据是豆瓣的评分是来自于“愿意在豆瓣上评分的人”,而不是来自于所有人(例如在街上随机抽人调查)。“愿意在网站上评分”大致取决于性格以及影片观后感。而我从来都不属于这种人。

不过去年跟朋友讨论之后,我觉得可以做一个量化实验,判断各个电影评分对我能有多大参考意义。简单来说就是我看若干影片,自己打个分,然后跟各个电影评分算相关性。我自己打分分为4档:好看,一般,勉强以及难看,分值分别是2, 1, 0和-1。另外看电影之前我根据网上的信息预测电影的评分,作为比对。

下面是根据十七部电影的统计结果,九部国外八部国内。图表显示了各个评分系统对于我实际观感的Pearson相关系数,数值越高越相关:



可以看出相关性都不咋样,最高的是我自己的预测,豆瓣相比其他的系统要高不少。最有趣的是Metacritic的相关性几乎为0,甚至是负数。

在得出“自己评分比别的系统更靠谱”的结论之前,我又想了想:

- 自己的评分是参考了网上我查到的各种信息,其中就包括了各类评分和评论
- 我挑选的十七部影片大部分都是预测还行的影片,其中只有一部预测-1,一部预测0,其他预测都是1或者2。所以这并不是均匀的抽样,实际推理来看网上的评分已经帮过过滤掉大部分的烂片了。把那两部预测-1和0的影片去掉以后Pearson相关性是这样的:


虽然分值也都不高,但是很多评分都是比我预测要好的,有的虽然是负相关,但也可以拿来用。

所以结论我只能说,在高分区(或者说我初步判断电影可以看)网上评分勉强有点用,但是作用不大。理论上网上的低分可以帮我过滤掉烂片,但是通过我的实验并不能证明。

感觉这在游戏上是类似的,回头也许再做实验验证一下。

Comments

Popular posts from this blog

Determine Perspective Lines With Off-page Vanishing Point

In perspective drawing, a vanishing point represents a group of parallel lines, in other words, a direction. For any point on the paper, if we want a line towards the same direction (in the 3d space), we simply draw a line through it and the vanishing point. But sometimes the vanishing point is too far away, such that it is outside the paper/canvas. In this example, we have a point P and two perspective lines L1 and L2. The vanishing point VP is naturally the intersection of L1 and L2. The task is to draw a line through P and VP, without having VP on the paper. I am aware of a few traditional solutions: 1. Use extra pieces of paper such that we can extend L1 and L2 until we see VP. 2. Draw everything in a smaller scale, such that we can see both P and VP on the paper. Draw the line and scale everything back. 3. Draw a perspective grid using the Brewer Method. #1 and #2 might be quite practical. #3 may not guarantee a solution, unless we can measure distances/p...

[转] UTF-8 and Unicode FAQ for Unix/Linux

这几天,这个东西把我搞得很头疼 而且这篇文章好像太大了,blogger自己的发布系统不能发 只好用mail了 //原文 http://www.cl.cam.ac.uk/~mgk25/unicode.html UTF-8 and Unicode FAQ for Unix/Linux by Markus Kuhn This text is a very comprehensive one-stop information resource on how you can use Unicode/UTF-8 on POSIX systems (Linux, Unix). You will find here both introductory information for every user, as well as detailed references for the experienced developer. Unicode has started to replace ASCII, ISO 8859 and EUC at all levels. It enables users to handle not only practically any script and language used on this planet, it also supports a comprehensive set of mathematical and technical symbols to simplify scientific information exchange. With the UTF-8 encoding, Unicode can be used in a convenient and backwards compatible way in environments that were designed entirely around ASCII, like Unix. UTF-8 is the way in which Unicode is used under Unix, Linux, and similar systems. It is now time to make sure that you are well familiar ...

Moving Items Along Bezier Curves with CSS Animation (Part 2: Time Warp)

This is a follow-up of my earlier article.  I realized that there is another way of achieving the same effect. This article has lots of nice examples and explanations, the basic idea is to make very simple @keyframe rules, usually just a linear movement, then use timing function to distort the time, such that the motion path becomes the desired curve. I'd like to call it the "time warp" hack. Demo See the Pen Interactive cubic Bezier curve + CSS animation by Lu Wang ( @coolwanglu ) on CodePen . How does it work? Recall that a cubic Bezier curve is defined by this formula : \[B(t) = (1-t)^3P_0+3(1-t)^2tP_1+3(1-t)t^2P_2+t^3P_3,\ 0 \le t \le 1.\] In the 2D case, \(B(t)\) has two coordinates, \(x(t)\) and \(y(t)\). Define \(x_i\) to the be x coordinate of \(P_i\), then we have: \[x(t) = (1-t)^3x_0+3(1-t)^2tx_1+3(1-t)t^2x_2+t^3x_3,\ 0 \le t \le 1.\] So, for our animated element, we want to make sure that the x coordiante (i.e. the "left" CSS property) is \(...