Skip to main content

关于在bochs的gdb-stub中加入对虚拟内存访问的支持

最近操统课需要用到bochs这个模拟器,我用的2.3.5. 但是实际出现了以个问题,就是gdb-stub这个功能不大正常,运行gdb后可以正常下断点,但是单步进可以,单步过却和单步进相同,这个问题不大比较恶心的是无法显示局部变量的值,总是显示0xffffffff
                        
google了半天没看到一点有用的。。。。。唉,只好自己搞
                        
参阅了gdb protocol后我修改了bochs的gdbstub.cc,让其显示出与gdb交互的内容,大致了解了内存这部分的步骤,主要是gdb给server(即bochs)发一个内存读取的请求,格式为m addr,length, 然后server返回十六进制的数据
                        
在bochs的gdbstub.cc 558行为处理这个指令的,不难看懂,我修改了它,让它输出access_linear的返回值,然后再调试,查看局部变量,果然valid为0,进一步,到access_linear, 经过痛苦地多次调试,发现问题处在valid=BX_MEM(0)->dgb_fetch_mem...一行,最后进到或则个函数,在memory/misc_mem.cc 512行下看到了这部分,原来是bochs发现读取的地址越界,就用0xff填充,然后返回0, 我修改了0xff,然后用gdb调试时证实了这一点。
                        
最后往上看,发现是addr比内存的长度还要大, 加入调试输出后发现gdb读的地址是0xf010
9fe0左右,而BX_MEM_THIS len仅有2000000,这显然会越界。
                        
起初我考虑也许是那里关于内存大小的设置没有弄好,但没有找到具体位置,但后来发现其实那BX_MEM_THIS len 是在.bochsrc里有定义的,0x2000000=2^25=32k,而那个0xf0109fe0是内核做的虚拟内存,gdb只跟bochs打交道,而虚拟内存是内核弄的,虚拟机又管不着。因此好像没什么好办法。。。

之后我查了很多关于虚拟内存的资料,发现其实是cpu直接支持的,于是我看到了希望。仍是从bochs的源码开刀。

一开始我是把目光放在了gdt和ldt上,但是未果。最后又发现了它里面的CPU类有一个get_segment_base函数,几经尝试,找到了临时解决方法:

修改bochs的gdbstub.cc
将567行附近的
access_linear(addr,len,BX_READ,mem);
改成
access_linear((BX_CPU(0)->get_segment_base(BX_SEG_REG_CS))+addr,len,BX_READ,mem)
;
然后重新编译,记得是用gdb stub版本(./configure --enable-gdb-stub)

思路就是在gdb服务器端自动对虚拟内存作个映射。目前发现常用的关于断点,堆栈,数据,单步等相关命令都基本正常(不过好像有同学说w命令不好使,我没确认)。

不知道这个算不算bochs的一个bug, 跟它反映了一下,至今没有回应。

不过这还是第一次半系统地阅读了一个开源软件的代码,另外涉及到gdb协议,虚拟内存,cpu等知识,混在一起,最后还弄成功了,实在很过瘾。
  

Comments

Popular posts from this blog

Determine Perspective Lines With Off-page Vanishing Point

In perspective drawing, a vanishing point represents a group of parallel lines, in other words, a direction. For any point on the paper, if we want a line towards the same direction (in the 3d space), we simply draw a line through it and the vanishing point. But sometimes the vanishing point is too far away, such that it is outside the paper/canvas. In this example, we have a point P and two perspective lines L1 and L2. The vanishing point VP is naturally the intersection of L1 and L2. The task is to draw a line through P and VP, without having VP on the paper. I am aware of a few traditional solutions: 1. Use extra pieces of paper such that we can extend L1 and L2 until we see VP. 2. Draw everything in a smaller scale, such that we can see both P and VP on the paper. Draw the line and scale everything back. 3. Draw a perspective grid using the Brewer Method. #1 and #2 might be quite practical. #3 may not guarantee a solution, unless we can measure distances/p...

[转] UTF-8 and Unicode FAQ for Unix/Linux

这几天,这个东西把我搞得很头疼 而且这篇文章好像太大了,blogger自己的发布系统不能发 只好用mail了 //原文 http://www.cl.cam.ac.uk/~mgk25/unicode.html UTF-8 and Unicode FAQ for Unix/Linux by Markus Kuhn This text is a very comprehensive one-stop information resource on how you can use Unicode/UTF-8 on POSIX systems (Linux, Unix). You will find here both introductory information for every user, as well as detailed references for the experienced developer. Unicode has started to replace ASCII, ISO 8859 and EUC at all levels. It enables users to handle not only practically any script and language used on this planet, it also supports a comprehensive set of mathematical and technical symbols to simplify scientific information exchange. With the UTF-8 encoding, Unicode can be used in a convenient and backwards compatible way in environments that were designed entirely around ASCII, like Unix. UTF-8 is the way in which Unicode is used under Unix, Linux, and similar systems. It is now time to make sure that you are well familiar ...

Moving Items Along Bezier Curves with CSS Animation (Part 2: Time Warp)

This is a follow-up of my earlier article.  I realized that there is another way of achieving the same effect. This article has lots of nice examples and explanations, the basic idea is to make very simple @keyframe rules, usually just a linear movement, then use timing function to distort the time, such that the motion path becomes the desired curve. I'd like to call it the "time warp" hack. Demo See the Pen Interactive cubic Bezier curve + CSS animation by Lu Wang ( @coolwanglu ) on CodePen . How does it work? Recall that a cubic Bezier curve is defined by this formula : \[B(t) = (1-t)^3P_0+3(1-t)^2tP_1+3(1-t)t^2P_2+t^3P_3,\ 0 \le t \le 1.\] In the 2D case, \(B(t)\) has two coordinates, \(x(t)\) and \(y(t)\). Define \(x_i\) to the be x coordinate of \(P_i\), then we have: \[x(t) = (1-t)^3x_0+3(1-t)^2tx_1+3(1-t)t^2x_2+t^3x_3,\ 0 \le t \le 1.\] So, for our animated element, we want to make sure that the x coordiante (i.e. the "left" CSS property) is \(...