Skip to main content

Visual Studio 命令行

今天需要在命令行下使用Visual Studio进行编译,搜了以下,发现msbuild可以,然后又搜了搜,发现devenv可以带参数在命令行下运行,我以前只知道它可以进到IDE里。

在链接的网站里找到了这个:


用法:
devenv [solutionfile | projectfile | anyfile.ext] [switches]

可以调用 devenv,用第一个参数指定解决方案文件或项目文件。也可以调用 devenv,使第一个参数作为要在编辑器中打开的任何其他类型的文件。如果提供项目文件,IDE 将通过在与项目文件相同的目录中查找与项目文件具有相同基名称的 .sln 文件,在解决方案的上下文中打开该项目文件。如果存在 .sln 文件,则IDE 将查找引用该项目的单个 .sln 文件。如果不存在这样的单个 .sln 文件,则 IDE 将创建一个具有默认 .sln 文件名的未保存的解决方案,而该默认文件名与项目文件具有相同的基名称。

命令行生成:
devenv solutionfile.sln /build solutionconfig [ /project projectnameorfile [ /projectconfig name ] ]

可用的命令行开关:

/build 生成指定的解决方案配置
/project 指定生成项目而不是解决方案
必须指定 /build 才能使用 /project
/projectconfig 指定要生成的项目配置
必须指定 /project 才能使用 /projectconfig
/out 将生成结果写入指定的文件
/rebuild 与 /build 类似,但先执行强制清理
/clean 清理生成结果
/deploy 生成指定的解决方案配置然后部署它
/run 运行指定的解决方案配置
/runexit 运行指定的解决方案配置然后终止
/command 启动后执行指定的内部命令行
/mditabs 使用选项卡式文档界面
/mdi 使用 MDI 界面
/fn 使用指定的字体名称
/fs 使用指定的字体大小
/LCID 使用指定的语言 ID
/noVSIP 禁用用于 VSIP 测试的VSIP 开发人员许可证密钥
/safemode 出于稳定性仅加载默认的环境和服务
/resetskippkgs 允许曾被标记为加载失败的 VsPackages再次加载
/migratesettings 迁移另一个版本中的某些用户设置

产品特定的开关:

/debugexe 打开要调试的指定可执行文件。命令行的其余部分作为它的参数传递到此执行文件。
/useenv 使用 PATH、INCLUDE、LIBPATH 和 LIB 环境变量而不是使用 VC++ 生成的 IDE 路径。

若要从命令行附加调试器,请使用:
vs7jit.exe -p

比较常用的就是 devenv filename.sln /build release 了

Comments

Popular posts from this blog

Determine Perspective Lines With Off-page Vanishing Point

In perspective drawing, a vanishing point represents a group of parallel lines, in other words, a direction. For any point on the paper, if we want a line towards the same direction (in the 3d space), we simply draw a line through it and the vanishing point. But sometimes the vanishing point is too far away, such that it is outside the paper/canvas. In this example, we have a point P and two perspective lines L1 and L2. The vanishing point VP is naturally the intersection of L1 and L2. The task is to draw a line through P and VP, without having VP on the paper. I am aware of a few traditional solutions: 1. Use extra pieces of paper such that we can extend L1 and L2 until we see VP. 2. Draw everything in a smaller scale, such that we can see both P and VP on the paper. Draw the line and scale everything back. 3. Draw a perspective grid using the Brewer Method. #1 and #2 might be quite practical. #3 may not guarantee a solution, unless we can measure distances/p...

[转] UTF-8 and Unicode FAQ for Unix/Linux

这几天,这个东西把我搞得很头疼 而且这篇文章好像太大了,blogger自己的发布系统不能发 只好用mail了 //原文 http://www.cl.cam.ac.uk/~mgk25/unicode.html UTF-8 and Unicode FAQ for Unix/Linux by Markus Kuhn This text is a very comprehensive one-stop information resource on how you can use Unicode/UTF-8 on POSIX systems (Linux, Unix). You will find here both introductory information for every user, as well as detailed references for the experienced developer. Unicode has started to replace ASCII, ISO 8859 and EUC at all levels. It enables users to handle not only practically any script and language used on this planet, it also supports a comprehensive set of mathematical and technical symbols to simplify scientific information exchange. With the UTF-8 encoding, Unicode can be used in a convenient and backwards compatible way in environments that were designed entirely around ASCII, like Unix. UTF-8 is the way in which Unicode is used under Unix, Linux, and similar systems. It is now time to make sure that you are well familiar ...

Moving Items Along Bezier Curves with CSS Animation (Part 2: Time Warp)

This is a follow-up of my earlier article.  I realized that there is another way of achieving the same effect. This article has lots of nice examples and explanations, the basic idea is to make very simple @keyframe rules, usually just a linear movement, then use timing function to distort the time, such that the motion path becomes the desired curve. I'd like to call it the "time warp" hack. Demo See the Pen Interactive cubic Bezier curve + CSS animation by Lu Wang ( @coolwanglu ) on CodePen . How does it work? Recall that a cubic Bezier curve is defined by this formula : \[B(t) = (1-t)^3P_0+3(1-t)^2tP_1+3(1-t)t^2P_2+t^3P_3,\ 0 \le t \le 1.\] In the 2D case, \(B(t)\) has two coordinates, \(x(t)\) and \(y(t)\). Define \(x_i\) to the be x coordinate of \(P_i\), then we have: \[x(t) = (1-t)^3x_0+3(1-t)^2tx_1+3(1-t)t^2x_2+t^3x_3,\ 0 \le t \le 1.\] So, for our animated element, we want to make sure that the x coordiante (i.e. the "left" CSS property) is \(...